Everyday Linux

A couple weeks ago, there was a Forbes article that caught my eye. (No, librarians, it wasn’t that twaddle, please don’t hurt me)

No, it was this one, relating one writer/podcaster’s decision to switch to Linux as his everyday operating system after a few too many of the new “Blue Screen of Death”: Windows 10’s staggeringly inconvenient and endless Update screens.

Actually, turn it on, turn it off, who cares! You’re not working on that spreadsheet today anyway.

The article stood out because I had already been planning to write something extremely similar myself. A couple years ago, I needed a new laptop and decided I wanted out of the Apple ecosystem, partly because Apple’s desktop/laptop hardware and macOS design seemed increasingly shunted to the side in favor of iOS/mobile/tablets, but mostly because of $$$. I considered jumping ship to a Windows 10 machine, which, as I’ve said on several occasions, is actually a pretty nifty OS at its core – but, like Mr. Evangelho, I had encountered one too many productivity-destroying updates to my liking on my Windows station at work. Never mind the intrusive privacy defaults and the insane inability to permanently uninstall Candy Crush, Minecraft and other bloatware forced upon me by Microsoft.


I had used Linux operating systems, particularly Ubuntu (via BitCurator) before, and thought it might be time to take the leap to everyday use. After a little bit of research to make sure I would still be able to find versions of my most common/critical applications, I jumped ship and haven’t looked back. So, whereas I have written before about Linux in a professional context for digital preservation on several occasions, I want to finally make my evangelizing case of Linux as an everyday, personal operating system – for anyone.

Linux has a reputation as a “geeky” system for programmers and hardcore computer tinkerers, but it’s become incredibly accessible to anyone – or at least, certainly to anyone who’s used to having macOS or Windows in their daily lives. In fact, you’re almost certainly already using Linux even if you don’t realize it – if you have an Android smartphone, if you have a Chromebook laptop, if you have any of a thousand different smart/networked home devices (which, please throw them in the trash, but whatever), you’re using and relying on Linux.

Breaking away from the Mac/Windows dichotomy is as easy as your original choice of one or the other – the hurdle is largely just realizing there’s another option to debate.

Why Linux?

A Linux operating system is an example of free and open source software, often abbreviated FOSS. The “free” in there is meant to refer to “freedom”, not price (although FOSS tends to be free in that sense as well) – a legacy of the Free Software Foundation‘s four maxims that computer users should be able to:

  • run a program
  • study a program’s source code (in essence, to understand exactly how it works)
  • redistribute exact copies of that program
  • create and distribute modified versions of that program

This is all in opposition to closed and proprietary software, which use copyright and patent licenses to run contrary to at least one or more of these ideas. (Note that some open source software may still carry licenses that restrict the latter two points in certain ways – always check!)

Look, I could go on my anti-capitalist screed here, but you should probably just go see a more clever and entertaining one. But what it comes down to is that, unlike the proprietary model of one company hiring employees to build and distribute/sell its own, closed software, open source software is built by collaborative networks of programmers and users, under the general philosophy that humanity tends to make better, more broadly applicable advancements when everyone stands to (at least potentially) benefit.

Laika believed in this, don’t you?

That doesn’t mean that all open source developers are noble self-sacrificing volunteers. There are entire companies – like Canonical, Mozilla, Red Hat – dedicated to creating and supporting it, and any number of name-brand tech giants – Google, Oracle, yes Microsoft and Apple even – that at least participate in certain open source projects. When I say everyone can benefit, that often includes Big Tech. So don’t get me wrong, there’s plenty of ways to participate in and advocate for FOSS in ways that don’t involve a total shift in your operating system and computing environment, if you’re perfectly content where you are now.

But for me, switching over completely to a FOSS operating system in Linux felt like a way to take back some control from increasingly intrusive devices. For many years, Apple products’ big selling point was “it just works”, and I solidly felt that way with my first couple MacBooks – buy a laptop and the operating system got out of the way, letting you browse the internet, make movies, write up Sticky Note reminders, listen to music, and install other favorite programs and games, in a matter of minutes. I could do whatever it was I wanted to do.

I don’t feel like macOS (or Windows) “just works” quite in that same way anymore – they’re designed to work the way Apple and Microsoft want me to work. Constant, barraging notifications to log in to iCloud or OneDrive accounts, to enable Siri or Cortana AI assistance. Obscured telemetry settings sending data back to the hivemind and downloading “helpful” background programs, clogging up the computer’s resources without user knowledge. Stepping way beyond security concerns to slowly but surely cordon off anything downloaded by the user, to pigeonhole them into corporately-vetted App Stores. A six-month long hooplah over “Dark Mode.”

…go away forever?

(Look, I’m no fool – Apple’s choices were always business choices, made to ultimately improve their company’s market share, no matter which way you slice it – but I don’t think I’m alone in feeling that for some time that meant ceding at least the illusion of control to the user, or at least not nagging them every damn day into the feeling they were somehow using their own computer the “wrong” way)

Linux operating systems, because they are open and modifiable, are also extremely flexible and controllable – if that means you want to get into the nitty-gritty and install every single piece of software that makes a computer work yourself, go for it. But if that means you just want something that gets out of the way and lets you play Oregon Trail on the Internet Archive, Linux can also be that. It can be your everyday, bread-and-butter, “just works” computer, without voices constantly shouting at you about what that should look like.

What’s different?

Well, despite the whole stirring case I may have just made…there is no “Linux operating system.” Or at least, there is no one thing called “Linux” that you just go out and download and start streaming Netflix on.

Linux is a kernel. It’s the very center, core, most important piece of an operating system, but it’s not entirely functional in and of itself. You have to pile a bunch of other things on top of it: a desktop environment, a way to install and update applications, icons and windows and buttons – all the sexy, front-facing stuff that most of us actually consider when picking which operating system we want to use. So many, many, many people and companies have created their own version of that stuff, piled it on top of Linux, and released it as their own operating system. And each one of those can have a completely different look or feel to them.

All these different flavors or versions of Linux are referred to as distributions. (If you want to really fit in, call them “distros“)

So….what distribution do you choose???

This is absolutely the most overwhelming thing about switching to Linux. There are a lot of distributions, and they all have their own advantages and disadvantages – sometimes not very obvious, because there aren’t necessarily whole marketing teams behind them to give you the quick, summarized pitch on what makes their distribution different from others.

I’ve tried out several myself and will give out some recommendations, in what I hope are user-friendly terms, in the next/last section. This huge amount of choice at this very first stage can be staggering, but consider the benefit compared to closed systems: do you ever wish macOS had a “home” button and a super-key like Windows, so you could just pull up applications and more without having to remember the keyboard shortcut for Spotlight? Do you wish the Windows dock was more responsive, or its drop-down menus were located all the way at the top of the screen so you had more space for your word document? You’re probably never going to be able to make those tweaks unless Apple or Microsoft make them for you. With Linux, you can find the distribution that either already mixes and matches things the right way for you – or lets you tweak them yourself!

Like literally entire applications dedicated to easily tweaking the system

In terms of hardware, if you’re coming from Windows/PC-land, there’s not going to be much difference at all. Like Windows, you install a Linux operating system on a third-party hardware manufacturer’s device: HP, IBM, Lenovo, etc. You can competitively price features to your liking – more or less storage, higher resolution screen, higher quality keyboard or trackpad, whatever it is that’s important to you and your everyday comfort.

A small handful of companies will even directly sell you laptops with Linux distributions pre-installed (System76, Dell). But for the most competitive (read: cheapest) options, you’ll have to install Linux on a PC of your choice yourself.

Maybe not the most efficient choice

Like with Windows, this does also mean you *may* occasionally have to install or reinstall drivers to make certain peripheral devices (Wi-Fi cards, external mice) play nice with your operating system. This used to be a much more common issue than it is now, and a legitimate knock against Linux systems – but these days, if you’re using a major, well-supported distribution, it’s really no worse than Windows. And if you’re sitting there, a dedicated Windows user, thinking “huh, I’ve never had to deal with that”, neither have I in two years on my Linux laptop. This is more a warning to the Mac crowd that, hey, it’s possible for problems to arise when the company making the software isn’t also making the hardware (and if you’ve ever used a cheap non-Apple Thunderbolt adapter  or power charger – you probably knew that anyway!)

Finally, applications! Again, the major Linux distributions have all at this point pretty much borrowed the visual conception of the “App Store” – a program you can use to easily browse, install and launch a vast range of open source software. The vetting may not be as thorough – so bring the same healthy dose of skepticism and awareness that you do to the Google Play Store and you’ll be fine.

Sure, “contains ads”, seems legit

If you’re worried about losing out on your favorite Mac/Windows programs, you absolutely may want to do some research to make sure there are either Linux versions or at least satisfactory Linux equivalents to the software you need. But while you might not be able to get Adobe programs, for instance, on to your new operating system, there’s plenty of big-name proprietary apps that have made the leap in recent years: Spotify, Slack, even Skype. And Linux programs are usually available to at least open and convert the files you originally made with their Mac/Windows equivalents (LibreOffice can open and work with the various Microsoft Office formats, for instance, and GIMP can at least partially convert PhotoShop .PSDs)

Installing these applications is as easy as clicking “Install” in an App Store. No Apple ID hoops to go through. And the really wonderful thing is that unlike Mac or Windows, most Linux systems will track and perform application updates at the same time and in the same place as operating system updates – no more menu-searching and notifications from individual applications to make sure you’re on the latest, greatest, and most secure version of any given program. You’ll just get a general pop-up from the “Software Center” or equivalent and perform updates in one quick, fell swoop, or as nit-picky as desired. (And my Linux laptop has never unexpectedly forced a restart to update while I was doing something else)

And finally, Linux drives are formatted differently than macOS or Windows, using the “ext4” file system. This means you can encounter some of the same quirks in moving your old files to a Linux system that you’ve ever had in shuttling between Mac and Windows – but Linux pretty much always comes with at least read support for HFS+ (Mac) and NTFS (Windows) drives, so likewise I’ve never had issues with at least just transferring old files over to a new drive.

How can I try it out?

The great news is, unlike Mac or Windows, you don’t have to go to a physical store or buy a completely new laptop just to try a Linux distribution and see if it’s something you would like to use!

Just like when you install (or reinstall) the operating system on a Mac or Windows computer, to install Linux you’ll need a USB drive that is at least 8GB large to house the installation disk image – an ISO file. Unlike Mac or Windows, Linux installation images, in addition to the installation program itself, pretty much always have a “Live” mode – this lets you run a Linux session on your computer, to see how well it works on your hardware and if you like the distribution’s design and features. It’s a fantastic try-before-you-buy feature, and can even work with MacBooks, if that’s all you have (just don’t be surprised/blame Linux if there’s some hardware wonkiness, like your keyboard not responding 100% correctly).

Once you have an 8GB USB flash drive and the ISO file for the OS you want to try downloaded, you’ll need an application to “burn” the ISO to the flash drive and make it bootable. I recommend Etcher, which is multi-platform so it’ll work whether you’re starting out on Mac or Windows (and also, just for the record, if you’re trying to make bootable installers from macOS .DMGs or Windows ISOs – Etcher is a rad tool!). From there you’ll need to boot into the installer USB according to instructions that will depend on your laptop manufacturer (it usually means holding down one of the function keys at the top of your keyboard during startup, but the key combination varies depending on the hardware/maker).

So what about all those distributions? Which ones should you try? Here are some of the most popular flavors that I think would also be accessible to converts making their way over from macOS or Windows. These distributions all have wide user bases, meaning they all have either good documentation or even active support accounts that you can contact in the event of questions or problems.


Thanks to its popularity as an operating system for servers and the Internet of Things, Ubuntu is probably the biggest name in Linux, and if you just want a super stable, incredibly well-supported desktop with thoughtful features, it is still my go-to recommendation for most casual users seeking alternative to macOS and Windows (and as I said earlier, if you’ve ever encountered BitCurator, you already know what it looks/feels like). It’s what I use myself for day-to-day web browsing, streaming services, word processing, some Steam gaming, light digipres/coding and a bit of server maintenance for this very site.

When it comes to Ubuntu, you’re going to want to look to try out a version labeled “LTS” – that’s “Long-Term Support”, meaning OS updates are guaranteed for five years (any of the other versions are primarily for developers and other anxious early adopters who don’t mind a few more bugs). The latest LTS release, 18.04, just came out a couple months ago with a pretty major desktop redesign, but it’s as attractive, sleek and functional as ever, and I came back to it after flirting with some of the other distributions on this list.

Linux Mint

Linux Mint is itself a derivative of Ubuntu, so everything I just said about stability and support goes for Mint as well – the Mint developers just wait for Ubuntu to release updates and then add their own spin. The differences are thus largely visual – Linux Mint’s desktop is made to look more like Windows, so users who are migrating from that direction are more likely to be at home here. It’s been around for a while so the support community is likewise large and varied.


Zorin is also an Ubuntu derivative that’s even more explicitly targeted at converting Windows users/Linux newbies. It’s newer than Mint but I have to say personally I think that’s led to a fresher, more attractive design. (More Windows 10 to Linux Mint’s Windows 7). In fact it’s pretty much built around flexible, easily changed desktop design. Going with a distribution based on super pretty icons and easily swapping around menus might seem silly, but honestly, there’s so many distributions with such similar core features that these *are* the kinds of decisions that make Linux users go with one over the other.

elementary OS

Whereas Linux Mint and Zorin are more or less “Ubuntu for Windows converts”, elementary OS has a visual design more targeted to bring over macOS users, with a dock, top menu bar, etc. It’s a very light, sleek OS that really only ships with the most basic apps and the design encourages you to keep things simple (their media apps are literally just called things like “Music” and “Videos”, and their custom web browser Epiphany has a bare minimum of features to keep from becoming a memory hog like Firefox and Chrome). But since it’s Ubuntu based you can still easily install more familiar open source apps like VLC, etc. Also a very intriguing Linux OS to try if you’re used to something like a Chromebook or a tablet as your primary device.


System76 is known more for their attractive hardware and great customer support (I’ve had my Lemur for two years and am still in love), but they recently tried putting out their own Ubuntu Linux distribution targeted at developers and creative professionals. It pretty much seems like Ubuntu but with some more minimalist icon design and some nifty expanded features for multiple workspaces, but mostly I’m plugging them here because if you wind up looking for higher-end hardware and some really helpful, responsive support, System76 is tops.


Whereas all these previous distributions I’ve mentioned have built off the stability of Ubuntu, Solus is different, as it is its own completely independent OS. It’s an example of a “rolling release” operating system: while with macOS, Windows, and many Linux distributions like Ubuntu, you have to worry about your particular, fixed-point version eventually becoming obsolete and no longer receiving updates (e.g. once macOS 10.14 comes out, those users still using 10.11 will no longer receive security and software updates from Apple), Solus will just continually roll out updates, forever. Or, well, “forever,” but you get what I mean.

That means users actually get the latest software and features much faster, as you don’t have to wait for those things to get bundled into the next “release”. It’s an interesting model if you’re really ready to unmoor and explore away from the usual systems.

Aside from that, Solus’ custom “Budgie” desktop design is extremely pretty and modern, with a quick-launch menu and a custom applets bar. It feels a lot like Windows 10 in that sense.

Color is Math

I know, I hate to break it to you. I’m not thrilled about it either – one of my favorite memories from high school is walking straight up to my Statistics teacher on the last day of senior year and proudly announcing that it was the last time I was ever going to be in a math class. (Yes, I do feel a bit guilty about the look of befuddled disappointment on his face, but by god I was right)

But it’s true: at least when it comes to video preservation, color is math. Everything else you thought you knew about color – that it’s light, that you get colors by mixing together other colors, that it’s pretty – is irrelevant.


Just now, you thought you were looking at color bars? Wrong. Numbers.


When I first started learning to digitize analog video, the concept of luminance and brightness made sense. Waveform monitors made sense. A bright spot in a frame of video shows up as a spike on the waveform in way that appeases visual logic. When digitizing, you wanted to keep images from becoming too bright or too dark, lest visual details at these extremes be lost in the digital realm. All told, pretty straightforward.

Vectorscopes and chrominance/color information made less sense. There were too many layers of abstraction, and not just in “reading” the vectorscope and translating it to what I was seeing on the screen – there was something about the vocabulary around color and color spaces, full of ill-explained and overlapping acronyms (as I have learned, the only people who love their acronyms more than moving image archivists and metadata specialists are video engineers).

I’d like to sift through some of the concepts, redundancies, and labeling/terminology that threw me off personally for a long time when it came to color.


Who in the rainbow can draw the line where the violet tint ends and the orange tint begins? Distinctly we see the difference of the colors, but where exactly does the one first blendingly enter into the other? So with sanity and insanity.

Herman Melville, Billy Budd

I think it might help if we start very very broad in thinking about color before narrowing in on interpreting color information in the specific context of video.

In the early 20th century, color scientists attempted to define quantitative links between the visible spectrum of electromagnetic wavelengths and the physiological perception of the human eye. In other words – in the name of science, they wanted to standardize the color “red” (and all the other ones too I guess)

Though we all know it’s the best one, right

Given the insanely subjective process of assigning names to colors, how do you make sure that what you and I (or more importantly, two electronics manufacturers) call “red” is the same? By assigning an objective system of numbers/values to define what is “red” – and orange, yellow, green, etc. etc. – based on how light hits and is interpreted by the human eye.

After a number of experiments in the 1920s, the International Commission on Illumination (abbreviated CIE from the French – like FIAF) developed in 1931 what is called the CIE XYZ color space: a mathematical definition of, in theory, all color visible to the human eye. The “X”, “Y” and “Z” stand for specific things that are not “colors” exactly, so I don’t even want to get into that here.

The important thing about the CIE XYZ color space – you can’t really “see” it. The limitations of image reproduction technology mean there will always be tangible limits standing between you and the full CIE XYZ gamut (outside of, maybe, a color scientist’s lab, but I’m not even convinced of that). Consider that graph above: even though it’s colored in for illustrative purposes, that’s not actually every color you can possibly see in there. The actual wavelengths of light produced, and therefore colors represented, by your computer’s LED screen encompasses a much much more limited range of values.

tl;dr your computer screen, compared to the mathematical limits of the natural world – sucks.

That’s to be expected though! Practical implementations of any standard will always be more limited than an abstract model.


So even if it basically only exists in theory (and in the unbounded natural world around us), the CIE XYZ color space and its definition of color values served as the foundation for most color spaces that followed it. A color space is the system for creating/reproducing color employed by any particular piece of technology. Modern color printers, for example, use the CMYK color space: a combination of four color primaries (cyan, magenta, yellow, and “key”/black) that when mixed together by certain, defined amounts, create other colors, until you have hard copies of your beautiful PowerPoint presentation ready to distribute.

Again, just like CIE XYZ, any color space you encounter is math – it’s just a method of saying this number means orange and this number means blue and this number means taupe. But, just like with all other kinds of math, color math rarely stays that straightforward. The way each color space works, the way its values are calculated, and the gamut it can cover largely depend on the vagaries and specific limitations of the piece of technology it’s being employed with/on. In the case of CIE XYZ, it’s the human eye – in the case of CMYK, it’s those shitty ink cartridges on your desktop laser printer that are somehow empty again even though you JUST replaced them.

More lying liars who lie

So what about analog video? What are the specific limitations there?

Peak TV: Color in Analog Video

Video signals and engineering are linked pretty inextricably with the history of television broadcasting, the first “mass-market” application of video recording.

So tune in to what you know of television history. Much like with film, it started with black-and-white images only, right? That’s because it’s not just budding moving image archivists who find brightness easier to understand and manipulate in their practical work – it was the same for the engineers figuring out how to create, record, and broadcast a composite video signal. It’s much easier for a video signal to tell the electron gun in a CRT television monitor what to do if frame-by-frame it’s only working with one variable: “OK, be kinda bright here, now REALLY BRIGHT here, now sorta bright, now not bright at all”, etc.

Compare that to: “OK, now display this calculated sum of three nonlinear tristumulus primary component values, now calculate it again, and again, and oh please do this just as fast when we just gave you the brightness information you needed”.

So in first rolling out their phenomenal, game-changing new technology, television engineers and companies were fine with “just” creating and sending out black-and-white signals. (Color film was only just starting to get commonplace anyway, so it’s not like moving image producers and consumers were clamoring for more – yet!)

Who needs color video when you have these two, said America

But as we moved into the early 1950s, video engineers and manufacturing companies needed to push their tech forward (capitalism, competition, spirit of progress, yadda yadda), with color signal. But consider this – now, not only did they need to figure out how to create a color video signal, they needed to do it while staying compatible with the entire system and market of black-and-white broadcasting. The broadcast companies and the showmakers and the government regulation bodies and the consumers who bought TVs and everyone else who JUST got this massive network of antennas and cables and frequencies and television sets in place were not going to be psyched to re-do the entire thing only a few years later to get color images. Color video signal needed to work on televisions that had been designed for black-and-white.

From the CIE research of the ’20s and ’30s, video engineers knew that both the most efficient and wide-ranging (in terms of gamut of colors covered) practical color spaces were composed by mixing values based on primaries of red, green, and blue (RGB).

No no no no notorious

But in a pure RGB color space, brightness values are not contained on just one component, like in composite black-and-white video – each of the three primary values is a combination of both chrominance and luminance (e.g. the R value is a sum of two other values that mean “how red is this” and “how bright is this”, respectively). If you used such a system for composite analog video, what would happen if you piped that signal into a black-and-white television monitor, designed to only see and interpret one component, luminance? You probably would’ve gotten a weirdly dim and distorted image, if you got anything at all, as the monitor tried to interpret numbers containing both brightness and color as just brightness.

This is where differential color systems came into play. What engineers found is that you could still create a color composite video signal from three component primaries – but instead of those being chrominance/luminance-mixed RGB values, you could keep the brightness value for each video frame isolated in its own Y′ component (which Charles Poynton would insist I now call luma, for reasons of…..math), while all the new chroma/color information could be contained in two channels instead of three: a blue-difference (B′-Y′) and a red-difference (R′-Y′) component. By knowing these three primaries, you can actually recreate four values: brightness (luma) plus three chroma values (R, G, and B). Even though there’s strictly speaking no “green” value specified in the signal, a color television monitor can figure out what this fourth value should be based on those differential calculations.

For television broadcasting, keeping the luma component isolated meant that you could still pipe a color composite video signal into a black-and-white TV, and it would still just display a correct black-and-white image: it  just used the values from the luma component and discarded the two color difference components. Meanwhile, new monitors designed to interpret all three components correctly would display a proper color image.

This basic model of using two color difference components for video was so wildly efficient and successful that we still use color spaces based on this model today! Even as we passed from analog video signals into digital.

Making it possible with adapters and converters, to, say, play Fallout 4 on a B&W TV

Lookup Table: “YUV”

…but you may have noticed that I just said “basic model” and “color spaces”, as in plural. Uh oh.

As if this wasn’t all complicated enough, video engineers still couldn’t all just agree on one way to implement the Y′, B′-Y′, R′-Y′ model. Engineers working within the NTSC video standard needed something different than those working with PAL, who needed something different than SECAM. The invention of component video signal, where these three primaries were each carried on their own signal/cable, rather than mixed together in a single, composite signal, also required new adjustments. And digital video introduced even more opportunities for sophisticated color display.

I mean just look at this gamut

So you got a whole ton of related color spaces, each using the same color difference model, but employing different math to get there. In each case, the “scale factors” of the two color difference signals are adjusted to optimize the color space for the particular recording technology or signal in question. Even though they *always* basically represent blue-difference and red-difference components, the letters change because the math behind them is slightly different.

So here is a quick guide to some common blue/red difference color spaces, and the specific video signal/context they have been employed with:

  • Y′UV = Composite analog PAL video
  • Y′IQ = Composite analog NTSC video
  • Y′DBDR = Composite analog SECAM video
  • Y′PBPR = Component analog video
  • Y′CBCR = Component digital video – intended as digital equivalent/conversion of YPBPR, and also sometimes called “YCC”
  • PhotoYCC (Y′C1C2) = Kodak-developed digital color space intended to replicate the gamut of film on CD; mostly for still images, but could be encountered with film scans (whereas most still image color spaces are fully RGB rather than color-difference!)
  • xvYCC = component digital video, intended to take advantage of post-CRT screens (still relatively rare compared to Y′CBCR, though), sometimes called “x.v. Color” or “Extended-gamut YCC”

And now a PSA for all those out there who use ffmpeg or anyone who’s heard/seen the phrase “uncompressed YUV” or similar when looking at recommendations for digitizing analog video. You might be confused at this point: according to the table above, why are we making a “YUV” file in a context where PAL video might not be involved at all???

As Charles Poynton again helpfully lays out in this really must-read piece – it literally comes down to sloppy naming conventions. For whatever reason, the phrase “YUV” has now loosely been applied, particularly in the realm of digital video and images, to pretty much any color space that uses the general B′-Y′ and R′-Y′ color difference model.

I don’t know the reasons for this. Is it because Y′UV came first? Is it because, as Poynton lays out, certain pieces of early digital video software used “.yuv” as a file extension? Is it a peculiar Euro-centric bias in the history of computing? The comments below are open for your best conspiracy theories.

By which I mean Kirov conspiracy theories or GTFO

I don’t know the answer, but I know that in the vast vast majority of cases where you see “YUV” in a digital context – ffmpeg, Blackmagic, any other kind of video capture software – that video/file almost certainly actually uses the Y′CBCR color space.

Gamma Correction, Or How I Learned To Stop Worrying and Make a Keyboard Shortcut for “Prime”

Another thing that I must clarify at this point. As evidenced by this “YUV” debacle, some people are really picky about color space terminology and others are not. For the purposes of this piece, I have been really picky, because for backtracking through this history it’s easier to understand precise definitions and then enumerate the ways people have gotten sloppy. You have to learn to write longhand before shorthand.

So you may have noticed that I’ve been picky about using proper, capitalized subscripts in naming color spaces like Y′CBCR. In their rush to write hasty, mean-spirited posts on the Adobe forums, you may see people write things like “YCbCr” or “Y Cb Cr” or “YCC” or any other combination of things. They’re all trying to say the same thing, but they basically can’t be bothered to find or set the subscript shortcuts on their keyboard.

which, I mean, I don’t entirely blame ’em

In the same vein, you may have noticed these tiny tick marks (′) next to the various color space components I’ve described. That is not a mistake nor an error in your browser’s character rendering nor a spot on your screen (I hope). Nor is it any of the following things: an apostrophe, a single quotation mark, or an accent mark.

This little ′ is a prime. In this context it indicates that the luma or chroma value in question has been gamma-corrected. The issue is – you guessed it – math.

Curse you, Mathemagician

The human eye perceives brightness in a nonlinear fashion. Let’s say the number “0” is the darkest thing you can possibly see and “10” is the brightest. If you started stepping up from zero in precisely regular increments, e.g. 1, 2, 3, 4, etc., all the way up to ten, your eyes would weirdly not perceive these changes in brightness in a straight linear fashion – that is, you would *think* that some of the increases were more or less drastic than the others, even though mathemetically speaking they were all exactly the same. Your eyes are just more sensitive to certain parts of the spectrum.

Gamma correction adjusts for this discrepancy between nonlinear human perception and the kind of linear mathematical scale that technology like analog video cameras or computers tend to work best with. Don’t ask me how it does that – I took Statistics, not Calculus.

The point is, these color spaces adjust their luma values to account for this, and that’s what the symbol indicates. It’s pretty important – but then again, prime symbols are usually not a readily-accessible shortcut that people have figured out on their keyboards. So they just skip them and write things like… “YUV”. And I’m not just talking hasty forum posts at this point – I double-dare you to try and reconstruct everything I’ve just told you about color spaces from Wikipedia.

Which, come to think of it, the reason why “YUV” won out as a shorthand term for Y′CBCR may very well be just that it doesn’t involve any subscripts or primes. Never underestimate ways programmers will look to solve inefficiencies!

Reading a Vectorscope – Quick Tips

This is all phenomenal background information, but when it gets down to it, a lot of people digitizing video just want to know how to read a vectorscope so they can tell if the color in their video signal is “off”.

Here we have a standard SMPTE  NTSC color bars test pattern as it reads on a properly calibrated vectorscope. Each of the six color bars (our familiar red, green, and blue, as well as cyan, yellow, and magenta) are exactly as they should, as evidenced by the dots/points falling right into the little square boxes indicated for them (the white/gray bar should actually be the point smack in the center of the vectorscope, since it contains no chroma at all).

The saturation of the signal will be determined by how far away from the center of the vectorscope the dots for any given frame or pixel of video fall. For example, here is an oversaturated frame – the chroma values for this signal are too high, which you can tell because the dots are extending out way beyond the little labeled boxes.

Meanwhile, an undersaturated image will just appear as a clump towards the center of the vectorscope, never spiking out very far (and a black-and-white image should in fact only do that!)

Besides saturation, a vectorscope can also help you see if there is an error in phase or hue (both words refer to the same concept). As hopefully demonstrated by our discussion of color spaces and primaries, colors generally relate to each other in set ways – and the circular, wheel-like design of the vectorscope reflects that. If the dots on a vectorscope appear rotated – that is, dots that should be spiking out towards the “R”/red box, are instead headed for the “Mg”/magenta box – that indicates a phase error. In such a case, any elephants you have on screen are probably going to start all looking like pink elephants.

The problem is, even with these “objective” measurements, color remains a stubbornly subjective thing. Video errors in saturation and phase may not be so wildly obvious as the examples above, making them a tricky thing to judge, especially against artistic intent or the possibility of an original recording being made with mis-calibrated equipment. Again, you can find plenty of tutorials and opinions on the subject of color correction online from angry men, but I always just tell everyone to use your best judgement. It’s as good as anyone else’s!

XKCD #1492

(If you do want or need to adjust the color in a video signal, you’ll need a processing amplifier.)

Pixel Perfect: Further Reading on Color

I’ve touched on digital video and color here but mostly focused on pre-digital color spaces and systems for audiovisual archivists and others who work with analog video signals. Really, that’s because all of this grew out of a desire to figure out what was going on with “uncompressed YUV” codecs and “-pix_fmt yuv420p” ffmpeg flags, and I worked backwards from there until I found my answers in analog engineering.

There’s so much more to get into with color in video, but for today I think I’m going to leave you with some links to explore further.

From the master of pixels, Charles Poynton:

On the subject of chroma subsampling:

On the subject of other color spaces beyond Y′CBCR

  • openYCoCg
    An experimental video codec from AV Preservation by Reto Kromer, based on the Y′COCG color space, which can convert to/from RGB values but isn’t based on human vision models (using orange-difference and green-difference instead of the usual blue/red)
  • Digital Photography School: sRGB versus Adobe RGB
XKCD #1882

Doing DigiPres with Windows

A couple of times at NYU, a new student would ask me what kind of laptop I would recommend for courses and professional use in video and digital preservation. Maybe their personal one had just died and they were shopping for something new. Often they’d used both Mac and Windows in the past so were generally comfortable with either.

I was and still am conflicted by this question. There are essentially three options here: 1) some flavor of MacBook, 2) a PC running Windows, or 3) a PC running some flavor of Linux. (There are Chromebooks as well, but given their focus on cloud applications and lack of a robust desktop environment, I wouldn’t particularly recommend them for archivists or students looking for flexibility in professional and personal use)

Each of these options have their drawbacks. MacBooks are and always have been prohibitively expensive for many people, and I’m generally on board with calling those “butterfly switch” keyboards on recent models a crime. Though a Linux distribution like Ubuntu or Linux Mint is my actual recommendation and personally preferred option, it remains unfamiliar to the vast majority of casual users (though Android and ChromeOS are maybe opening the window), and difficult to recommend without going full FOSS evangelist on someone who is largely just looking to make small talk (I’ll write this post another day).

So I never want to steer people away from the very real affordability benefits of PC/Windows – yet feel guilty knowing that’s angling them full tilt against the grain of Unix-like environments (Mac/Linux) that seem to dominate digital preservation tutorials and education. It makes them that student or that person in a workshop desperately trying in vain to follow along with Bash commands or muck around in /usr/local while the instructor guiltily confronts the trolley problem of spending their time saving the one or the many.

I also recognize that *nix education, while the generally preferred option for the #digipres crowd, leaves a gaping hole in many archivists’ understanding of computing environments. PC/Windows remains the norm in a large number of enterprise/institutional workplaces. Teaching ffmpeg is great, but do we leave students stranded when they step into a workplace and can’t install command line programs without Homebrew (or don’t have admin privileges to install new programs at all)?

This post is intended as a mea culpa for some of these oversights by providing an overview of some fundamental concepts of working with Windows beyond the desktop environment – with an eye towards echoing the Windows equivalents to usual digital preservation introductions (the command line, scripting, file system, etc.).

*nix vs NT

To start, let’s take a moment to consider how we got here – why are Mac/Linux systems so different from Windows, and why do they tend to dominate digital preservation conversations?

Every operating system (whether macOS, Windows, a Linux distribution, etc.) is actually a combination of various applications and a kernel. The kernel is the core part of the OS – it handles the critical task of translating all the requests you as a user make in software/applications to the hardware (CPU, RAM, drives, monitor, peripherals, etc.) that actually perform/execute the request.

“Applications” and “Kernel” together make up a complete operating system.

UNIX was a complete operating system created by Bell Labs in 1969 – but it was originally distributed with full source code, meaning others could see exactly how UNIX worked and develop their own modifications. There is a whole complex web of UNIX offshoots that emerged in the ’80s and early ’90s, but the upshot is that a lot of people took UNIX’s kernel and used it as the base for a number of other kernels and operating systems, including modern-day macOS and Linux distributions. (The modifications to the kernel mean that these operating systems, while originally derived in some way from UNIX, are not technically UNIX itself – hence you will see these systems referred to as “Unix-like” or “*nix”)

The result of this shared lineage is that Mac and Linux operating systems are similar to each other in many fundamental ways, which in turn makes cross-compatible software relatively easy to create. They share a basic file system structure and usually a default terminal and programming language (Bash) for doing command line work, for instance.

Meanwhile there was Microsoft, which, though it originally created its own (phenomenally popular!) variant of UNIX in the ’80s, switched over in the late ’80s/early ’90s into developing its own, proprietary kernel, entirely separate from UNIX. This was the NT kernel, which is at the heart of basically every Windows operating system ever made. These fundamental differences in architecture (affecting not just clearly visible characteristics like file systems/naming and command line work, but extremely low-level methods of how software communicates with hardware) make it more difficult to make software cross-compatible between both *nix and Windows operating systems without a bunch of time and effort from programmers.

So, given the choice between these two major branches in computing, why this appearance that Mac hardware and operating systems have won out for digital preservation tasks, despite being the more expensive option for constantly cash-strapped cultural institutions and employees?

It seems to me it has very little to do with an actual affinity for Macs/Apple and everything to do with Linux and GNU and open source software. Unlike either macOS or Windows, Linux systems are completely open source – meaning any software developer can look at the source code for Linux operating systems and thus both design and make available software that works really well for them without jumping through any proprietary hoops (like the App Store or Windows Store). It just so happens that Macs, because at their core they are also Unix-like, can run a lot of the same, extremely useful software, with minimal to no effort. So a lot of the software that makes digital preservation easier was created for Unix-like environments, and we wind up recommending/teaching on Macs because given the choice between the macOS/Windows monoliths, Macs give us Bash and GNU tools and other critical pieces that make our jobs less frustrating.

Microsoft, at least in the ’90s and early aughts, didn’t make as much of an effort to appeal directly to developers (who, very very broadly speaking, value independence and the ability to do their own, unique thing to make themselves or their company stand out) – they made their rampant success on enterprise-level business, selling Windows as an operating system that could be managed en masse as the desktop environment for entire offices and institutions with less troubleshooting of individual machines/setups.

(Also key is that Microsoft kept their systems cheaper by never getting into the game of hardware manufacturing – unlike Mac operating systems, Windows is meant to run on third-party hardware made by companies like HP, Dell, IBM, etc. The competition between these manufacturers keeps prices down, unlike Apple’s all-in-one hardware + OS systems, making them the cheaper option for businesses opening up a new office to buy a lot of computers all at once. Capitalism!)

As I’ll get into soon, there have been some very intriguing reversals to this dynamic in recent years. But, in summary: the reason Macs have seemed to dominate digital preservation workshops and education is that there was software that made our jobs easier. It was never that you can’t do these things with Windows.

Windows File System

Beyond the superficial desktop design differences (dock vs. panel, icons), the first thing any user moving between macOS and Windows probably notices are the differences between Finder (Mac) and File Explorer (Windows) in navigating between files and folders.

In *nix systems, all data storage devices – hard disk drives, flash drives, external discs or floppies, or partitions on those devices – are mounted into the same, “root” file system as the operating system itself, in Windows every single storage device or partition is separated into its own “drive” (I use quotes because two partitions might exist on the same physical hard disk drive, but are identified by Windows as separate drives for the purpose of saving/working with files), identified by a letter – C:, D:, G:, etc. Usually, the Windows operating system itself, and probably most of a casual user’s files, are saved on to the default C: drive. (Why start at C? It harkens back to the days of floppy drives and disk operating systems, but that’s a story for another post). From that point, any additional drives, disks or partitions are assigned another letter (if for some reason you need more than 26 drives or partitions mounted, you’ll have to resort to some trickery!)

Also, file paths in Windows use backslashes (e.g. C:\Users\Ethan\Desktop) instead of forward slashes (/Users/Ethan/Desktop)

and if you’re doing command-line work, Bash (the default macOS CLI) is case-sensitive (meaning /Users/Ethan/Desktop/sample.txt and /Users/Ethan/Desktop/SAMPLE.txt are different files) while Windows’ DOS/PowerShell command line interfaces (more on these in a minute) are not (so SAMPLE.txt would overwrite sample.txt)


Fundamentally, I don’t think these minor differences affect the difficulty either way of performing common tasks like navigating directories in the command line or scripting from Macs – it’s just different, and an important thing to keep in mind to remember where your files live.

What DOES make things more difficult is when you start trying to move files between macOS and Windows file systems. You’ve probably encountered issues when trying to connect external hard drives formatted for one file system to a computer formatted for another. Though there’s a lot of programming differences between file systems that cause these issues (logic, security, file sizes, etc.), you can see the issue just with the minor, user-visible differences just mentioned: if a file lives at E:\DRIVE\file.txt on a Windows-formatted external drive, how would a computer running macOS even understand where to find that file?

Modern Windows systems/drives are formatted with a file system called NTFS (for many years Microsoft used FAT and its variants such as FAT16 and FAT32, so NTFS is backwards-compatible with these legacy file systems). Apple, meanwhile, is in a moment transitioning from its very longtime system HFS+ (which you may have also seen referred to in software as “Mac OS Extended”) to a new file system, APFS.

File system transitions tend to be a headache for users. NTFS and HFS+ have at least been around for long enough that quite a lot of software has been made to allow moving back and forth/between the two file systems (if you are on Windows, HFS Explorer is a great free program for exploring and extracting files on Mac-formatted drives; while on macOS, the NTFS-3G driver allows for similarly reading and writing from Windows-formatted storage). Since it is still pretty new, I am less aware of options for reading  APFS volumes on Windows, but will happily correct that if anyone has recommendations!

** I’ve got a lot of questions in the past about the exFAT file system, which is theoretically cross-compatible with both Mac and Windows systems. I personally have had great success with formatting external hard drives with exFAT, but have also heard a number of horror stories from those who have tried to use it and been unable to mount the drive into one or another OS. Anecdotally it seems that drives originally formatted exFAT on a Windows computer have better success than drives formatted exFAT on a Mac, but I don’t know enough to say why that might be the case. So: proceed, but with caution!

Executable Files

No matter what operating system you’re using, executable files are pieces of code that directly instruct the computer to perform a task (as opposed to any other kind of data file, whose information usually needs to be parsed/interpreted by executable software in some way to become in any way meaningful – like a word processing application opening a text file, where the application is the executable and the text file is the data file). As a common user, anytime you double-clicked on a file to open an application or run a script, whether a GUI or a command line program, you ran an executable.

Where executable files live and how they’re identified to you, the user, varies a bit from one operating system to the next. A MacOS user is accustomed to launching installed programs from the Applications folder, which are all actually .app files (.apps in turn are actually secret “bundles” that contain executables and other data files inside the .app, which you can view like a folder if you right-click and select “Open Package Contents” on an application).

Executable files (with or without a file extension) might also be automatically identified by macOS anywhere and labeled with this icon:

And finally, because executable files are also called binaries, you might find executables in a folder labeled “bin” (for instance, Homebrew puts the executable files for programs it installs into /usr/local/bin)

Windows-compatible executables are almost always identified with .exe file extensions. Applications that come with an installer (or, say, from the Windows Store) tend to put these in directories identified by the application name in the “Program Files” folder(s) by default. But some applications you just download off of GitHub or SourceForge or anywhere else on the internet might just put them in a “bin” folder or somewhere else.

(Note: script files, which are often identified by an extension according to the programming language they were written in – .py files for Python, .rb for Ruby, .sh for Bash, etc. – can usually be made automatically executable like an .exe but are not necessarily by default. If you download a script, whether working on Mac or Windows, you may need to check whether it’s automatically come to you as an executable or more steps need to be taken. They often don’t, because downloading executables is a big no-no from the perspective of malware protection.)

Command Prompt vs. PowerShell

On macOS, we usually do command line work (which offers powerful tools for automation, cool/flexible software, etc.) using the Terminal application and Bash shell/programming language.

Modern Windows operating systems are a little more confusing because they actually offer two command line interfaces by default: Command Prompt and PowerShell.

The Command Prompt application uses DOS commands and has essentially not changed since the days of MS-DOS, Microsoft’s pre-Windows operating system that was entirely accessed/used via command line (in fact, early Windows operating systems like Windows 3.1 and Windows 95 were to a large degree just graphic user interfaces built on top of MS-DOS).

The stagnation of Command Prompt/DOS was another reason developers started migrating over to Linux and Bash – to take advantage of more advanced/convenient features for CLI work and scripting. In 2006, Microsoft introduced PowerShell as a more contemporary, powerful command line interface and programming language aimed at developers in an attempt to win some of them back.

While I recognize that PowerShell can do a lot more and make automation/scripting way easier, I still tend to stick with Command Prompt/DOS when doing or teaching command line work in Windows. Why? Because I’m lazy.

The Command Prompt/DOS interface and commands were written around the same time as the original Bash – so even though development continued on Bash while Command Prompt stayed the same, a lot of the most basic commands and syntax remained analogous. For instance, the command for making a directory is the same in both Terminal and Command Prompt (“mkdir”), even if the specific file paths are written out differently.

So for me, while learning Command Prompt is a matter of tweaking some commands and knowledge that I already know because of Bash, learning PowerShell is like learning a whole new language – making a directory in PowerShell, e.g., is done with the command shortcut “md”.* It’s sort of like saying I already know Castillian Spanish, so I can tweak that to figure out a regional dialect or accent – but learning Portuguese would be a whole other course.

Relevant? Maybe not.

But your mileage on which of those things is easier may vary! Perhaps it’s more clear to keep your *nix and Windows knowledge totally separate and take advantage of PowerShell scripting. But this is just to explain the Command Prompt examples I may use for the remaining of this post.

* ok, yes, “mkdir” will also work in PowerShell because it’s the cmdlet name – this comparison doesn’t work so well with the basic stuff, but it gets true for more advanced functions/commands and you know it, Mx. Know-It-All

The PATH Variable

The PATH system variable is a fun bit of computing knowledge that hopefully ties together all the three previous topics we’ve just covered!

Every modern operating system has a default PATH variable set when you start it up (system variables are basically configuration settings that, as their name implies, you can update or change). PATH determines where your command line interface looks for executable files/binaries to use as commands.

Here’s an example back on macOS. Many of the binaries you know and execute as commands (cd, mkdir, echo, rm) live in /bin or /usr/bin in the file system. By default, the PATH variable is set as a list that contains both “/bin” and “/usr/bin” – so that when you type

$ cd /my/home/directory

into Terminal, the computer knows to look in /bin and /usr/bin to find the executable file that contains instructions for running the “cd” command.

Package managers, like Homebrew, usually put all the executables for the programs you install into one folder (in Homebrew’s case, /usr/local/bin) and ALSO automatically update the PATH variable so that /usr/local/bin is added to the PATH list. If Homebrew put, let’s say, ffmpeg’s executable file into the /usr/local/bin folder, but never updated the PATH variable, your Terminal wouldn’t know where to find ffmpeg (and would just return a “command not found” error if you ran any command starting with

$ ffmpeg

), even though it *is* somewhere on your computer.

So let’s move over to Windows: because Command Prompt, by default, does not have a package manager, if you download a command line program like ffmpeg, Command Prompt will not automatically know where to find that command – unless a) you move the ffmpeg directory, executable file included, into somewhere already in your PATH list (maybe somewhere like “C:\Program Files\”), or b) update the PATH list to include where you’ve put the ffmpeg directory.

I personally work with Windows rarely enough that I tend to just add a command line program’s directory to the PATH variable when needed – which usually requires rebooting the computer. So I can see how if you were adding/installing command line programs for Windows more frequently, it would probably be convenient to just create/determine “here’s my folder of command line executables”, update the PATH variable once, and then just put new downloaded executables in that folder from then on.

*** I do NOT recommend putting your Downloads or Documents folder, or any user directory that you can access/change files in without admin privileges, into your PATH!!! It’s an easy trick for accidentally-downloaded malware to get into a commonly-accessed folder (and/or one that doesn’t require raised/administrative privileges) and then be able to run its executable files from there without you ever knowing because it’s in your PATH.

Updating the PATH variable was a pain in the ass in Windows 7 and 8 but is much less so now on Windows 10.

If you are in the command line and want to quickly troubleshoot what file paths/directories are and aren’t in your PATH, you can use the “echo” command, which is available on both *nix and Windows systems. In *nix/Bash, variables can be invoked in scripts or changed with $PATH, so

$ echo $PATH

would return something like so, with the different file paths in the PATH list separated by colons:

While on Windows, variables are identified like %THIS%, so you would run

 > echo %PATH%

Package Management

Now, as I said above, package managers like Homebrew on macOS can usually handle updating/maintaining the PATH variable so you don’t have to do it by hand. For some time, there wasn’t any equivalent command line package manager (at least that I was aware of) for Windows, so there wasn’t any choice in the matter.

That’s no longer true! Now there’s Chocolatey, a package manager that will work with either Command Prompt or PowerShell. (Note: Chocolatey *uses* PowerShell in the background to do its business, so even though you can install and use Chocolatey with Command Prompt, PowerShell still needs to be on your computer. As long as your computer/OS is newer than 2006, this shouldn’t be an issue).

Users of Homebrew will generally be right at home with Chocolatey: instead of

$ brew install [package-name]

you can just type

 > choco install [package-name]

and Chocolatey will do the work of downloading the program and putting the executable in your PATH, so you can get right back to command line work with your new program. It works whether you’re on Windows 7 or 10.

The drawback, at least if you’re coming over from using macOS and Homebrew, is that Chocolatey is much more limited in the number/type of packages it offers. That is, Chocolatey still needs Windows-compatible software to offer, and as we went over before, some *nix software has just never been ported over to supported Windows versions (or at least, into Chocolatey packages). But many of the apps/commands you probably know and love as a media archivist: ffmpeg, youtube-dl, mediainfo, exiftool, etc. – are there!


If you’ve been doing introductory digipres stuff, you’ve probably dipped your toes into Bash scripting – which is just the idea of writing some code written in Bash into a plain text file, containing instructions for the Terminal. Your computer can then run the instructions in the script without you needing to type out all the commands into Terminal by hand. This is obviously most useful for automating repetitive tasks, where you might want to run the same set of commands over and over again on different directories or sets of files, without constant supervising and re-typing/remembering commands. Scripts written in Bash and intended for Mac/Linux Terminals tend to be identified with “.sh” file extensions (though not exclusively).

Scripting is absolutely still possible with Windows, but we have to adjust for the fact that the Windows command line interface doesn’t speak Bash. Command Prompt scripts are written in DOS style, and their benefit for Windows systems (over, say, PowerShell scripts) is that they are extremely portable – it doesn’t much matter what version of Windows or PowerShell you’re using.

Command Prompt scripts are often called “batch files” and can usually be identified by two different file extensions: .bat or .cmd

(The difference between the two extensions/file formats is negligible on a modern operating system like Windows 7 or 10. Basically, BAT files were used with MS-DOS, and CMD files were introduced with Windows NT operating systems to account for the slight improvements from the MS-DOS command line to NT’s Command Prompt. But, NT/Command Prompt remained backwards-compatible with MS-DOS/BAT files, so you would only ever encounter issues if you tried to run a CMD file on MS-DOS, which, why are you doing that?)

Actually writing Windows batch scripts for Command Prompt is its own whole tutorial. Which – thankfully – I don’t have to write, because you can follow this terrific one instead!

Because Command Prompt batch scripts are still so heavily rooted in decades-old strategies (DOS) for talking to computers, they are pretty awkward to look at and understand.

I mean what

A lot of software developers skip right to a more advanced/human-readable programming language like Python or Ruby. Scripts in these languages do also have the benefit of being cross-platform, since Python, for example, can be installed on either Mac or Windows. But Windows OS will not understand them by default, so you have to go install them and set up a development environment rather than start scripting from scratch as you can with BAT/CMD files.

Windows Registry

The Windows Registry is fascinating (to me!). Whereas in a *nix operating system, critical system-wide configuration settings are contained as text in files (usually high up under the “root” level of your computer’s file system, where you need special elevated permissions to access and change them), in Windows these settings (beyond the usual, low-level user settings you can change in the Settings app or Control Panel) are stored in what’s called the Windows Registry.

The Windows Registry is a database where configuration settings are stored, not as text in files, but as “registry values” – pieces or strings of data that store instructions. These values are stored in “keys” (folders), which are themselves stored in “hives” (larger folders that categorize the keys within related subfolders).

Registry values can be a number of different things – text, a string of characters representing hex code, a boolean value, and more. Which kind of data they are, and what you can acceptably change them to, depends entirely on the specific setting they are meant to control. However, values and keys are also often super abstracted from the settings they change – meaning it can be very very hard to tell what exactly a registry value can change or control just by looking at it.

…..no, not at all!

For that reason, casual users are generally advised to stay out of the Windows Registry altogether, and those who are going to change something are advised to make a backup of their Registry before making edits, so they can restore it if anything goes wrong.

Just as you may never mess around in your “/etc” folder on a Mac, even as a digitally-minded archivist, you may or may not ever need to mess in the Windows Registry! I’ve only poked around in it to do things like removing that damn OneDrive tab from the side of my File Explorer windows so I stop accidentally clicking on it. But I thought I’d mention it since it’s a pretty big difference in how the Windows operating and file systems work.

Or disable Microsoft’s over-extensive telemetry! Which, along with the fact that you can’t fucking uninstall Candy Crush no matter how hard you try, is one of the big things holding back an actually pretty nifty OS.

How to Cheat: *nix on Windows

OK. So ALL OF THIS has been based on getting more familiar with Windows and working with it as-is, in its quirky not-Unix-like glory. I wanted to write these things out, because to me, understanding the differences between the major operating systems helped me get a better handle on how computers work in general.

But guess what? You could skip all that. Because there are totally ways to just follow along with *nix-based, Bash-centric digital preservation education on Windows, and get everyone on the same page.

On Windows 7, there were several programs that would port a Bash-like command line environment and a number of Linux/GNU utilities to work in Windows – Cygwin probaby being the most popular. Crucially, this was not a way to run Linux/Unix-like applications on Windows – it was just a way of doing the most basic tasks of navigating and manipulating files on your Windows computer in a *nix-like way, with Bash commands (the software essentially translated them into DOS/Windows commands behind-the-scenes).

But a way way more robust boon for cross-compatibility was the introduction of the Windows Subsystem for Linux in Windows 10. Microsoft, for many years the fiercest commercial opponent of open source software/systems, has in the last ten years or so increasingly been embracing the open source community (probably seeing how Linux took over the web and making a long-term bet to win back the business of software/web developers).


The WSL is a complete compatibility layer for, in essence, installing Linux operating systems like Ubuntu or or Kali or openSUSE *inside* a Windows operating system. Though it still has its own limitations, this basically means that you can run a Bash terminal, install Linux software, and navigate around your computer just as you would on a *nix-only system – from inside Windows.

The major drawback from a teaching perspective: it is still a Linux operating system Windows users will be working with (I’d personally recommend Ubuntu for digipres newbies) – meaning there may still be nagging differences from Mac users (command line package management using “apt” instead of Homebrew for instance, although this too can be smoothed over with the addition of Linuxbrew). This little tutorial covers some of those, like mounting external drives into the WSL file system and how to get to your Windows files in the WSL.

You can follow Microsoft’s instructions for installing Ubuntu on the WSL here (it may vary a bit depending on which update/version exactly of Windows 10 you’re running).

That’s it! To be absolutely clear at the end of things here, I’ve generally not worked with Windows for most digital/audiovisual preservation tasks, so I’m hardly an expert. But I hope this post can be used to get Windows users up to speed and on the same page as the Mac club when it comes to the basics of using their computers for digipres fun!