Windows Subsystem for Linux – What’s the Deal?

This past summer, Microsoft released its “Anniversary Update” for Windows 10. It included a lot of the business-as-usual sort of operating system updates: enhanced security, improved integration with mobile devices, updates to Microsoft’s “virtual assistant” Cortana (who is totally not named after a video game AI character who went rampant and is currently trying to destroy all biological life in the known universe, because what company would possibly tempt fate like that?)

halo-4-cortana-rampant
“NO I WILL NOT OPEN ANOTHER INCOGNITO WINDOW FOR YOU, FILTH”

But possibly the biggest under-the-radar change to Windows 10 was the introduction of Bash on Ubuntu on Windows. Microsoft partnered with Canonical, the company that develops the popular Linux operating system distribution Ubuntu, to create a full-fledged Linux/Ubuntu subsystem (essentially Ubuntu 14.04 LTS) inside of Windows 10. That’s like a turducken of operating systems.

foo_ck_turducken_1223
Which layer is the NT kernel, though?

What does that mean, practically speaking? For years, if you were interested in command-line control of your Windows computer, you could use Powershell or the Command Prompt – the same basic command-line system that Microsoft has been using since the pre-Windows days of MS-DOS. Contrast that to Unix-based systems like Mac OSX and Ubuntu, which by default use an input system called the Bash shell – the thing you see any time you open the application Terminal.

 

The Bash shell is very popular with developers and programmers. Why? A variety of reasons. It’s an open-source system versus Microsoft’s proprietary interface, for one. It has some enhanced security features to keep users from completely breaking their operating system with an errant command (if you’re a novice command-line user, that’s why you use the “sudo” command sometimes in Terminal but never in Command Prompt – Windows just assumes everyone using Command Prompt is a “super user” with access to root directories, whereas Mac OSX/Linux prefers to at least check that you still remember your administrative password before deleting your hard drive from practical existence). The Bash scripting language handles batch processing (working with a whole bunch of files at once), scheduling commands to be executed at future times, and other automated tasks a little more intuitively. And, finally, Unix systems have a lot more built-in utility tools that make software development and navigating file systems more elegant (to be clear, these utility applications are not technically part of the Bash shell – they are built into the Mac OSX/Linux operating system itself and accessed via the Bash shell).

Bringing in a Linux subsystem and Bash shell to Windows is a pretty bold move to try and win back developers to Microsoft’s platform. There have been some attempts before to build Linux-like environments for Windows to port Mac/Linux software – Cygwin was probably the most notable – but no method I ever tried, at least, felt as intuitive to a Mac/Linux user as Bash on Ubuntu on Windows does.

cygwinsetup
what even are you

Considering the increasing attention on open-source software development and command-line implementation in the archival community, I was very curious as to whether Bash on Ubuntu on Windows could start bridging the divide between Mac and Windows systems in archives and libraries. The problem of incompatible software and the difference in command-line language between Terminal and Command Prompt isn’t insurmountable, but it’s not exactly convenient. What if we could get all users on the same page with the software they use AND how they use them – regardless of operating system???

OK. That’s still a pipe dream. I said earlier that the Windows Subsystem for Linux (yes that’s what it’s technically called even though that sounds like the exact opposite of what it should be) was “full-fledged” – buuuuuut I kinda lied. Microsoft intends the WSL to be a platform for software development, not implementation. You’re supposed to use it to build your applications, but not necessarily actually deploy it into a Windows-based workflow. To that end, there are some giant glaring holes from just a pure Ubuntu installation: using Bash on Ubuntu on Windows, you can’t deploy any Linux software with a graphical user interface (GUI) (for example, the common built-in Linux text editing utility program gedit doesn’t work – but nano, which allows you to text edit from within the Bash terminal window itself, does). It’s CLI or bust. Any web-based application is also a big no-no, so you’re not going to be able to sneakily run a Windows machine as a server using the Linux subsystem any time soon.

Edit: Oh and the other giant glaring thing I forgot to mention the first time around – there’s no external drive support yet. So the WSL can’t access removable media on USB or optical disc mounted on the Windows file system – only fixed drives. So disc imaging software, while it technically “works”, can only work with data already moved to your Windows system.

But with all those caveats in mind… who cares what Microsoft says is supposed to happen? What does it actually do? What works, and what doesn’t? I went through a laundry list of command-line tools that have been used or taught the past few years in our MIAP courses (primarily Video Preservation, Digital Preservation and Handling Complex Media), plus a few tools that I’ve personally found useful. First, I wanted to see if they installed at all – and if they did, I would try a couple of that program’s most basic commands, hardly anything in the way of flags or options. I wasn’t really trying to stress-test these applications, just see if they could indeed install and access the Windows file system in a manner familiar to Mac/Linux users.

bash
*Hello Bash my only friend / I’ve come to ‘cat’ with you again*

Before I start the run-down, a note on using Bash on Ubuntu on Windows yourself, if interested. Here are the instructions for installing and launching the Windows Subsystem for Linux – since the whole thing is technically still in beta, you’ll need to activate “developer” mode. Once installed and launched, ALL of these applications will only work through the Bash terminal window – you can not access the Linux subsystem, and all software installed thereon, from the traditional Windows Command Prompt. (It goes the other way too – you can’t activate your Windows applications from the Bash shell. This is all about accessing and working with the same files from your preferred command-line environment.) And once again, the actual Ubuntu version in this subsystem is 14.04 LTS – which is not the latest stable version of that operating system. So any software designed only to work with Ubuntu 16.04 or the very latest 16.10 isn’t going to work in the Windows subsystem.

Once you’re in a Bash terminal, you can access all your files stored within the Windows file system by navigating into the “/mnt/” directory:

[cc lang=”Bash”]$ cd /mnt/[/cc]

You should see different letters within this directory according to how many drives you have mounted in your computer, and their assigned letters/paths. For instance, for many Windows users all your files will probably be contained within something like:

[cc lang=”Bash”]/mnt/c/Users/your_user_name/Downloads[/cc] or

[cc lang=”Bash”]/mnt/c/Users/your_user_name/Desktop[/cc] , etc. etc.

And one last caveat: dragging and dropping a file into the Bash terminal to quickly get the full file path doesn’t work. It will give you a Command Prompt file path (e.g. “C:\Users\username\Downloads\file.pdf”) that the Bash shell can’t read. You’re going to have to manually type out the full file path yourself (tabbing over to automatically fill in directory/file names does still work, at least).

Let’s get to it!

Programs That Install Via Apt-Get:

  • bagit-java
  • bagit-python
  • cdrdao
  • ClamAV
  • ddrescue (install w/package name “gddrescue”, execute w/ command “ddrescue”)
  • ffmpeg (but NOT ffplay)
  • git
  • imagemagick
  • md5deep
  • mediainfo
  • MKVToolNix
  • Python/Python3/pip
  • Ruby/RubyGems
  • rsync
  • tree

Installing via Ubuntu’s “apt-get” utility is by far the easiest and most desirable method of getting applications installed on your Linux subsystem. It’s a package manager that works the same way as Homebrew on Mac, for those used to that system: just execute

[cc lang=”Bash”]$ sudo apt-get install nameofpackage [/cc]

and apt-get will install the desired program, including all necessary dependencies (any software libraries or other software utilities necessary to make the program run). As you can see, the WSL can handle a variety of useful applications: disk imaging (cdrdao, ddrescue), transcoders (ffmpeg, imagemagick), virus scanning (ClamAV), file system and metadata utilities (mediainfo, tree), hash/checksum generation (md5deep).

mediainfo
Windows 10!

You can also get distributions of programming languages like Python and Ruby and use their own package managers (pip, RubyGems) to install further packages/libraries/programs. I tried this out with Python by installing bagit-python (my preferred flavor of BagIt – see this previous post for difference between bagit-python and the bagit-java program you get by just running “apt-get bagit”), and with Ruby by installing the Nokogiri library and running through this little Ruby exercise by Ashley Blewer. (I’d tried it before on Mac OSX but guess what, works on Windows through the WSL too!)

A couple things to note: one, if you’re trying to install the Ubuntu version of ddrescue, there’s confusingly a couple different packages named the same thing, and serve the same purpose. There’s a nice little rundown of how that happened and how to make sure you’re installing and executing exactly the program you want on the Ubuntu forums.

Also, while ffmpeg’s transcoding and metadata-gathering features (ffprobe) work fine, its built-in media playback command (ffplay) will not, because of the aforementioned issue with GUIs (it has to do with X11, the window system that Unix systems use for graphical display, but never mind that for now). Actually, it sort of depends on how you define “work”, because while ffplay won’t properly play back video, it will generate some fucking awesome text art for you in the Bash terminal:

 

Programs That Require More Complicated Installation:

  • bulk_extractor (requires legacy JDK)
  • exiftool
  • Fslint
  • mediaconch
  • The Sleuth Kit tools

These applications can’t be installed via an apt-get package, but you can still get them running with a little extra work, thanks to other Linux features such as dpkg. Dpkg is another package management program – this one comes from Debian, a Linux operating system of which Ubuntu is a direct (more user-friendly) derivative. You can use dpkg to install Debian (.deb) packages (like the CLI of Mediaconch), although take note that unlike apt-get, dpkg does not automatically install dependencies – so you might need to go out and find other libraries/packages to install via apt-get or dpkg before your desired program actually starts working (for Mediaconch, for instance, you should just apt-get install Mediainfo first to make sure you have the libmediainfo library already in place).

The WSL does also have the autocompile and automake utilities of full Linux distributions, so you can also use those to get packages like The Sleuth Kit (a bunch of digital forensics tools) or Fslint (a duplicate file finder) running. Best solution is to follow whatever Linux installation documentation there is for each of these programs – if you have questions about troubleshooting specific programs, let me know and I’ll try to walk you through my process.

fslint

 

Programs That Don’t Work/Install…Yet:

  • Archivematica
  • Guymager
  • vrecord

I had no expectation that these programs would work given the stated GUI and web-based limitations of the WSL, but this is just to confirm that as far as I can tell, there’s no way to get them running. Guymager has the obvious GUI/X11 issue (plus the inability to recognize external devices, anyway, and the general dysfunction of the /dev/ directory). The vrecord team hasn’t successfully installed on Linux yet, and the WSL would run into the GUI issue even if they do release a Linux version. And web applications definitely aren’t my strong suit, but in the long process of attempting an Archivematica installation, the WSL seemed to have separate issues with Apache, uWSGI and NGINX. That’s a lot of troubleshooting to likely no end, so best to probably leave that one aside.

That’s about all for now – I’m curious if anyone else has been testing the WSL, or has any thoughts about its possible usefulness in bridging compatibility concerns. Is there any reason we shouldn’t just be teaching everyone Bash commands now??

Update (10/20): So the very day that I post this, Microsoft released a pretty major update to the WSL, with two major effects: 1) new installations of WSL will now be Ubuntu 16.04 (Xenial), though existing users such as myself will not automatically upgrade from 14.04; and 2) the Windows and Linux command-line interfaces now have cross-compatibility, so you can launch Windows applications from the Bash terminal and Linux applications from Command Prompt or Powershell. Combine that with the comment below from Euan with directions to actually launch Linux applications with GUIs, and there’s a whole slew of options to continue exploring here. Look for further posts in the future! This subsystem is clearly way more powerful than Microsoft initially wanted to let on.

Using Bagit

do you know how to use Bagit?
cause I’m lost
the libcongress github is sooo not user friendly

I’m missing bagger aren’t I
ugh ugh I just want to make a bag!

That’s an email I got a few weeks back from a good friend and former MIAP classmate. I wanted to share it because I feel like it sums up the attitude of a lot of archivists towards a tool that SHOULD be something of a godsend to the field and a foundational step in many digital preservation workflows – namely, the Library of Congress’ BagIt.

What is BagIt? It’s a software library, developed by the LoC in conjunction with their partners in the National Digital Information Infrastructure and Preservation Program (NDIIPP) to support the creation of “bags.” OK, so what’s a bag?

amerbeauty_165pyxurz

Let’s back up a minute. One of the big challenges in digital archiving is file fixity – a fancy term for checking that the contents of a file have not been changed or altered (that the file has remained “fixed”). There’s all sorts of reasons to regularly verify file fixity, even if a file has done nothing but sit on a computer or server or external hard drive: to make sure that a file hasn’t corrupted over time, that its metadata (file name, technical specs, etc.) hasn’t been accidentally changed by software or an operating system, etc.

But one of the biggest threats to file fixity is when you move a file – from a computer to a hard drive, or over a server, or even just from one folder/directory in your computer to another. Think of it kind of like putting something in the mail: there are a lot of points in the mailing process where a computer or USPS employee has to read the labeling and sort your mail into the proper bin or truck or plane so that it ends up getting to the correct destination. And there’s a LOT of opportunity for external forces to batter and jostle and otherwise get in your mail’s personal space. If you just slap a stamp on that beautiful glass vase you bought for your mother’s birthday and shove it in the mailbox, it’s not going to get to your mom in one piece.

screen-shot-2016-09-20-at-10-04-35-am
And what if you’re delivering something even more precious than a vase?

So a “bag” is a kind of special digital container – a way of packaging files together to make sure what we get on the receiving end of a transfer is the same thing that started the journey (like putting that nice glass vase in a heavily padded box with “fragile” stamped all over it).

Great, right? Generating a bag can take more time than people want, particularly if you’re an archive dealing with large, preservation-quality uncompressed video files, but it’s a no-brainer idea to implement into workflows for backing up/storing data. The thing is, as I said, the BagIt tools developed by the Library of Congress to support the creation of bags are software libraries – not necessarily in and of themselves fully-developed, ready-to-go applications. Developers have to put some kind of interface on top of the BagIt library for people to actually be able to actually interact and use it to create bags.

So right off the bat, even though tech-savvier archivists may constantly be recommending to others in the field to “use BagIt” to deliver or move their files, we’re already muddling the issue for new users, because there literally is no one, monolithic thing called “BagIt” that someone can just google and download and start running. And I think we seriously underestimate how much of a hindrance that is to widespread implementation. Basically anyone can understand the principles and need behind BagIt (I hopefully did a swift job of it in the paragraphs above) – but actually sifting through and installing the various BagIt distributions currently takes time, and an ability to read between the lines of some seriously scattered documentation.

So here I’m going to walk through the major BagIt implementations and explain a bit about how and why you might use each one. I hope consolidating all this information in one place will be more helpful than the Library of Congress’ github pages (which indeed make little effort to make their instructions accessible to anyone unfamiliar with developer-speak). If you want to learn more about the BagIt specification itself (i.e. what pieces/files actually make up a bag, how data gets hierarchically structured inside a bag, how BagIt checksums and tag manifests to do the file fixity work I mentioned earlier), I can recommend this introductory slideshow to BagIt from Justin Littman at the LoC.

Update (12/15/2017): While all the above info still stands, the roundup and installation instructions below are no longer 100% accurate. I’m keeping this post up for the sake of web archiving and laying the ever-changing state of digital preservation bare and all that, but if you’re here I’d now recommend that you proceed over to this post on using BagIt in 2018 for more up-to-date documentation!

1. Bagger (BagIt-java)

screen-shot-2016-09-20-at-9-27-12-am

The BagIt library was originally developed using a programming language called Java. For its first four stable versions, Bagit-java could be used either via command-line interface (a Terminal window on Macs or Linux/Ubuntu, Command Prompt in Windows), or via a Graphical User Interface (GUI) developed by the LoC itself called Bagger.

As of version 5 of Bagit-java, the LoC has completely ceased support of using BagIt-java via the command line. That doesn’t mean it isn’t still out there – if, for instance, you’re on a Mac and use the popular package manager Homebrew, typing

$ brew install bagit

will install the last, stable version (4.12.1) of BagIt-java. But damned if I know how to actually use it, because in its deprecation of support the LoC seems to have removed (or maybe just never wrote?) any online documentation (github or elsewhere) of how to use BagIt-java via command-line. No manual page for you.

Instead you now have to use Bagger to employ BagIt-java (from the LoC’s perspective, anyway). Bagger is primarily designed to run on Windows or, with some tinkering, Linux/Ubuntu and Mac OSX.

maxresdefault
They do, funnily enough, include a screed about the iPhone 7’s lack of a 3.5mm headphone jack.

So once you actually download Bagger, which I primarily recommend if you’re on Windows, there’s some pretty good existing documentation for using the application’s various features, and even without doing that reading, it’s a pretty intuitive program. Big honking buttons help you either start making a new bag (picking the A/V and other files you want to be included in the bag one-by-one and safely packaging them together into one directory) or create a “bag in place”, which just takes an already-existing folder/directory and structures the content within that folder according to the BagIt specification. You can also validate bags that have been given/sent to you (that is, check the fixity of the data). The “Is Bag Complete” feature checks whether a folder/directory you have is, in fact, officially a bag according to the rules of the BagIt spec.

(FWIW: I managed to get Bagger running on my OSX 10.10.5 desktop by installing an older version, 2.1.3, off of the Library of Congress’ Sourceforge. That download included a bagger.jar file that my Mac could easily open after installing the legacy Java 6 runtime environment (available here). But, that same Sourceforge page yells at you that the project has moved to Github, where you can only download the latest 2.7.1 release, which only includes the Windows-compatible bagger.bat file and material for compiling on Linux, no OSX-compatible .jar file. I have no idea what’s going on here, and we’ve definitely fallen into a tech-jargon zone that will scare off laypeople, so I’m going to leave it at “use Bagger with Windows”)

Update: After some initial confusion (see above paragraph), the documentation for running Bagger on OSX has improved twofold! First, the latest release of Bagger (2.7.2) came with some tweaks to the github repo’s documentation, including instructions for Linux/Ubuntu/OSX! Thanks, guys! Also check out the comments section on this page for some instructions for launching Bagger in OSX from the command-line and/or creating an AppleScript that will let you launch Bagger from Spotlight/the Applications menu like you would any other program.

2. Exactly

screen-shot-2016-09-20-at-9-29-04-am
Ed Begley knows exactly what I’m talking about

Developed by the consulting/developer agency AVPreserve with University of Kentucky Libraries, Exactly is another GUI built on top of Bagit-java. Unlike Bagger, it’s very easy to download, immediately install and run versions of Exactly for Mac or Windows, and AVPreserve provides a handy quickstart guide and a more detailed user manual, both very useful if you’re just getting started with bagging. Its features are at once more limited and more expansive than Bagger. The interface isn’t terribly verbose, meaning it’s not always clear what the application is actually doing from moment to moment. But Exactly is more robustly designed for insertion of extra metadata into the bag (users can create their own fields and values to be inserted in a bag’s bag-info.txt file, so you could include administrative metadata unique to your own institution).

And Exactly’s biggest attraction is that it actually serves as a file delivery client – that is, it won’t just package the files you want into a bag before transferring, but actual perform the transfer. So if you want to regularly move files to and from a dedicated server for storage with minimal fuss, Exactly might be the tool you want, albeit it could still use some aesthetic/verbosity design upgrades.

3. Command Line (BagIt-python)

screen-shot-2016-09-20-at-9-02-09-am

Let’s say you really prefer to work with command-line software. If you’re comfortable with CLI, there are many advantages – greater control over your bagging software and exactly how it operates. I mentioned earlier that the LoC stopped supporting BagIt-java for command-line, but that doesn’t mean you command-line junkies are completely out of luck. Instead they shifted support and development of command-line bagging to a different programming language: Python.

If you’re working in the command-line, chances are you’re on Mac OSX or maybe Linux. I’m going to assume from here on you’re on OSX, because anyone using Linux has likely figured all this out themselves (or would prefer to). And here’s the thing, if you’re a novice digital archivist working in the Terminal on OSX: you can’t install BagIt-python using Homebrew.

Instead, you’re going to need Python’s own package manager, a program called “pip.” In order to get Bagit-python, you’re going to need to do the following:

  1. Check what version of Python is on your computer. Mac OSX and Linux machines should come with Python already installed, but Bagit-python will require at least Python version 2.6 or above. You can check what version of Python you’re running in the terminal with:$ python ––version

    If your version isn’t high enough, visit https://www.python.org/downloads/ and download/install Python 2.7.12 for your operating system. (do not download a version of Python 3.x – Bagit-python will not work with Python 3, as if this wasn’t confusing enough)

  2. Now you’ll need the package manager/installer, pip. It may have come ready to go with your Python installation, or not. You can check that you have pip installed with:$ pip ––version

    If you get a version number, you’re ready to go to step 3. If you get a message that pip isn’t installed, you’ll have to visit https://pip.pypa.io/en/stable/installing/Click on the hyperlinked “get-pip.py”. A tab should open with a buncha text – just hit Command-S and you should have the option to save/download this page as a Python script (that is, as a .py file). Then, back in the Terminal, navigate into whatever directory you just downloaded that script into (Downloads perhaps, or Desktop, or wherever else), and run the script by invoking$ python get-pip.py

    Pip should now be installed.

     

  3. Once pip is in place you can just use it to install Bagit-python the same way you use Homebrew:$ pip install bagit               (sudo if necessary)

You should be all set now to start using Bagit-python via the command-line. You can invoke Bagit-python using commands that start with “bagit.py” – it’s a good idea to go over command line usage and options for adding metadata by visiting the help page first, which is one of the LoC’s better efforts at documentation: https://github.com/LibraryOfCongress/bagit-python or:

$ bagit.py –help

But the easiest usage is just to create a bag “in place” on a directory you already have, with a flag for whichever kind of checksum you want to use for fixity:

$ bagit.py –md5 /path/to/directory

As with Bagger, the directory will remain exactly where it is in your file system, but now will contain the various tag/checksum manifests and all the media files within a “data” folder according to the BagIt spec. Again, the power of command-line BagIt-python lies in its flexibility – the ability to add metadata, choose different checksum configurations, increase or decrease the verbosity of the software. If you’re comfortable with command-line tools, this is the implementation I would most recommend!

Update:  Please also read this terrific tutorial by Kathryn Gronsbell for the 2016 NDSR symposium for a more detailed rundown of BagIt-python use and installation, including sample exercises!!!

4. BaggerJS

screen-shot-2016-09-20-at-9-31-51-am

It’s still in an early/experimental phase, but the LoC is also working on a web-based application for bagging called BaggerJS (built on a version of the BagIt library written in JavaScript, which yes, for those wondering at home, is a totally different programming language than Java that works specifically for web applications, because we needed more versioning talk in this post).

Right now you can select and hash files (generate checksums for file fixity), and upload valid bags to a cloud server compatible with Amazon’s s3 protocol. Metadata entry and other features are still incomplete, but if development continues, this might, like Exactly, be a nice, simplified way to perform light bag transfers, particularly if you use a cloud storage service to back up files. It also has the advantage of not requiring any installation whatsoever, so novice users can more or less step around around the Java vs. Python, GUI vs. CLI questions.

https://libraryofcongress.github.io/bagger-js/

5. Integrated into other software platforms/programs

The BagIt library has also been integrated into larger, more complex software packages, designed for broader digital repository management. Creating bags is only one piece of what these platforms are designed to do. One good example is Archivematica, which can perform all kinds of file conformance checks, transcoding, automatic metadata generation and more. But it does package data according to the BagIt spec whenever it actually transfers files from one location to another.

And that’s the other, more complicated way to use the BagIt library – by building it into your own software and scripts! Obviously this is a more advanced step for archivists who interested in coding and software development. But the various BagIt versions (Java, Python, JavaScript) and the spec itself are all in the public domain and anyone could incorporate them into their own applications, or recreate the BagIt library in the programming language of their choice (there is, for instance, a BagIt-ruby version floating around out there, though it’s apparently deprecated and I’ve never heard of anyone who used it).

Dual-Boot a Windows Machine

It is an inconvenient truth that the MIAP program is spread across two separate buildings along Broadway. They’re only about five minutes apart, and the vast majority of the time this presents no problems for students or staff, but it does mean that my office and one of our primary lab spaces are in geographically separate locations. Good disaster planning, troublesome for day-to-day operations.

The Digital Forensics Lab (alternately referred to as the Old Media Lab or the Dead Media Lab, largely depending on my current level of frustration or endearment towards the equipment contained within it) is where we house our computing equipment for the excavation and exploration of born-digital archival content: A/V files created and contained on hard drive, CD, floppy disk, zip disk, etc. We have both contemporary and legacy systems to cover decades of potential media, primarily Apple hardware (stretching back to a Macintosh SE running OS 7), but also a couple of powerful modern Windows machines set up with virtual machines and emulators to handle Microsoft operating systems back to Windows 3.1 and MS-DOS.

Having to schedule planned visits over from my office to the main Tisch building in order to test, update, or otherwise work with any of this equipment is mildly irksome. That’s why my office Mac is chock full of emulators and other forensic software that I hardly use on any kind of regular basis – when I get a request from a class for a new tool to be installed in the Digital Forensics Lab, it’s much easier to familiarize myself with the setup process right where I am before working with legacy equipment; and I’m just point-blank unlikely to trek over the other building for no other reason than to test out new software that I’ve just read about or otherwise think might be useful for our courses.

sleepy-office-worker-at-desk-with-multiple-coffees
#ProtestantWorkEthic

This is a long-winded way of justifying why the department purchased, at my request, a new Windows machine that I will be able to use as a testing ground for Windows-based software and workflows (I had previously installed a Windows 7 virtual machine on my Mac to try to get around some of this, but the slowed processing power of a VM on a desktop not explicitly setup for such a purpose was vaguely intolerable). The first thing I was quite excited to do with this new hardware was to set up a dual-boot operating system: that is, make it so that on starting up the computer I would have the choice of using either Windows 7 or Windows 10, which is the main thing I’m going to talk about today.

IMG_2329
Swag

Pretty much all of our Windows computers in the archive and MIAP program still run Windows 7 Pro, for a variety of reasons – Windows 8 was geared so heavily towards improved communication with and features for mobile devices that it was hardly worth the cost of upgrading an entire department, and Windows 10 is still not even a year old, which gives me pause in terms of the stability and compatibility of software that we rely on from Windows 7. So I needed Windows 7 in order to test how new programs work with our current systems. However, as it increases in market share and developers begin to migrate over, I’m increasingly intrigued by Windows 10, to the point that I also wanted access to it in order to test out the direction our department might go in the future. In particular I very much wanted to try out the new Windows Subsystem for Linux, available in the Windows 10 Anniversary Update coming this summer – a feature that will in theory make Linux utilities and local files accessible to the Windows user via a Bash shell (the command-line interface already seen on Mac and Ubuntu setups). Depending how extensive the compatibility gets, that could smooth over some of the kinks we have getting all our students (on different operating systems) on the same page in our Digital Literacy and Digital Preservation courses. But that is a more complicated topic for another day.

When my new Windows machine arrived, it came with a warning right on the box that even though the computer came pre-installed with Windows 7 and licenses/installation discs for both 7 and Windows 10,

You may only use one version of the Windows software at a time. Switching versions will require you to uninstall one version and install the other version.

1d8acd8c6e8e337ce31bef84a8636491

This statement is only broadly true if you have no sense of partitioning, a process by which you can essentially separate your hard drive into distinct, discrete sections. The computer can basically treat separate partitions as separate drives, allowing you to format the different partitions with entirely separate file systems, or, as we will see here, install completely different operating systems.

Now, as it happens, it also turned out to be semi-true for my specific setup, but only temporarily and because of some kinks specific to manufacturer who provided this desktop (hi, HP!). I’ll explain more in a minute, but right now would be a good point to note that I was working with a totally clean machine, and therefore endangering no personal files in this whole partitioning/installation process. If you also want to setup some kind of dual-boot partition, please please please make sure all of your files are backed up elsewhere first. You never know when you will, in fact, have to perform a clean install and completely wipe your hard drive just to get back to square one.

1a0a18d74db871e6358d7526b271c0e749d9cedb8afd2411816625802370c924
“Arnim Zola sez: back up your files, kids!”

So, as the label said, booting up the computer right out of the box, I got a clean Windows 7 setup. The first step was to make a new blank partition on the hard drive, on to which I could install the Windows 10 operating system files. In order to do this, we run the Windows Disk Management utility (you can find it by just hitting the Windows Start button and typing “disk management” into the search bar:

start

Once the Disk Management window pops up, I could see the 1TB hard drive installed inside the computer (labelled “Disk 0”), as well as all the partitions (also called “volumes”) already on that drive. Some small partitions containing system and recovery files (from which the computer could boot into at least some very basic functionality even if the Windows operating system were to corrupt or fail) were present, but mostly (~900 GB) the drive is dedicated to the main C: volume, which contains all the Windows 7 operating files, program files, personal files if there were any, etc. By right-clicking on this main partition and selecting “Shrink Volume,” I can set aside some of that space to a new partition, on to which we will install the Windows 10 OS. (note all illustrative photos gathered after the fact, so some numbers aren’t going to line up exactly here, but the process is the same)

hesx3

If you wanted to dual-boot two operating systems that use completely incompatible file systems – for instance, Mac and Windows – you would have to set aside space for not only the operating system’s files, but also all of the memory you would want to dedicate to software, file storage, etc. However, Windows 7 and 10 both use the NTFS file system – meaning Windows 10 can easily read and work with files that have been created on or are stored in a Windows 7 environment. So in setting up this new partition I only technically had to create space for the Windows 10 operating system files, which run about 25 GB total. In practice I wanted to leave some extra space, just in case some software comes along that can only be installed on the Windows 10 partition, so I went ahead and doubled that number to 50 GB (since Disk Management works in MB, we enter “50000” into the amount of space to shrink from the C: volume).

shrink_volume

Disk Management runs for a minute and then a new Blank Partition appears on Disk 0. Perfect! I pop in the Windows 10 installation disc that came with the computer and restart. In my case, the hardware automatically knew to boot up from the installation disc (rather than the Windows 7 OS on the hard drive), but it’s possible others would have to reset the boot order to go from the CD/DVD drive first, rather than the installed hard drive (this involves the computer’s BIOS or UEFI firmware interface – more on that in a minute – but for now if it gives you problems, there’s plenty of guides out there on the Googles).

Following the instructions for the first few parts of the Windows 10 installer is straightforward (entering a user name and password, name for the computer, suchlike), but I ran into a problem when finally given the option to select the partition on to which I wanted to install Windows 10. I could see the blank, unformatted 50 GB partition I had created, right there, but in trying to select it, I was given this warning message:

Windows cannot be installed to this disk. The selected disk is of the GPT partition style.

Humph. In fact I could not select ANY of the partitions on the disk, so even if I had wanted to do a clean install of Windows 10 on to the main partition where Windows 7 now lived, I couldn’t have done that either. What gives, internet?

So for many many many years (in computer terms, anyway – computer years are probably at least equivalent to dog years), PCs came installed with a firmware interface called the BIOS – Basic Input/Output System. In order to install or reinstall operating system software, you need a way to send very basic commands to the hard drive. The BIOS was able to do this because it lived on the PC’s motherboard, rather than on the hard drive – as long as your BIOS was intact, your computer would have at least some very basic functionality, even if your operating system corrupted or your hard drive had a mechanical failure. With the BIOS you could reformat your hard drive, select whether you booted the operating system from the hard drive or an external source (e.g. floppy drive or CD drive), etc.

header
Or rule a dystopian underwater society! …wait

In the few seconds when you first powered on a PC, the BIOS would look to the very first section of a hard drive, which (if already formatted) would contain something called a Master Boot Record, a table that contains information about the partitions present on that hard drive: how many partitions are present, how large each of them are, what file system was present on each, which one(s) contained bootable operating system software, which partition to boot from first (if multiple partitions had a bootable OS).

windows-cannot-be-installed-to-this-disk
You probably saw something like this screen by accident once when your cat walked across your keyboard right as you started up the computer.

Here’s the thing: because of the limitations of the time, the BIOS and MBR partition style can only handle a total of four partitions on any one drive, and can only boot from a partition if it isless than about 2.2 TB in size. For a long time, that was plenty of space and functionality to work with, but with rapid advancements in the storage size of hard drives and the processing power of motherboards, the BIOS and MBR partitioning became increasingly severe and arbitrary roadblocks. So from the late ’90s through the mid-’00s, an international consortium developed a more advanced firmware interface, called UEFI (Unified Extensible Firmware Interface) that employed a new partition system, GPT (GUID Partition Table). With GPT, there’s theoretically no limit to the number of partitions on a drive, and  UEFI can boot from partitions as large as 9.4 ZB (yes, that’s zettabytes). For comparison’s sake, 1 ZB is about equivalent to 36,000 years of 1080p high-definition video. So we’re probably set for motherboard firmware and partition styles for a while.

n2cnt4
We’re expected to hit about 40 zettabytes of known data in 2020. Like, total. In the world. Our UEFI motherboards are good for now.

UEFI can not read MBR partitions as is, though it has a legacy mode that can be enabled to restrict its own functionality to that of the BIOS, and thereby read MBR. If the UEFI motherboard is set to only boot from the legacy BIOS, it can not understand or work with GPT partitions. Follow?

So GETTING BACK TO WHAT WE WERE ACTUALLY DOING….the reason I could not install a new, Windows 10-bootable partition on to my drive was that the UEFI motherboard in my computer had booted from the legacy BIOS -for some reason.

jdhvc
Me.

Honestly, I’m not sure why this is. Obviously this was not a clean hard drive when I received it – someone at HP had already installed Windows 7 on to this GPT-partitioned hard drive, which would’ve required the motherboard to be in UEFI boot mode. So why did it arrive with legacy BIOS boot mode not only enabled, but set first in the preferential boot order? My only possible answer is that after installing Windows 7, they went back in and set the firmware settings to legacy BIOS boot mode in order to improve compatibility with the Windows 7 OS – which was developed and released still in the days when BIOS was still the default for new equipment.

This was a quick fix – restart the computer, follow the brief on-screen instructions to enter the BIOS (usually pressing the ESC key, though it can vary with your setup), and navigating through the firmware settings to re-enable UEFI boot mode (I also left legacy BIOS boot enabled, though lower in the boot order, for the above-stated reasoning about compatibility with Windows 7 – so now, theoretically, my computer can start up from either MBR or GPT drives/disks with no problem).

Phew. Are you still with me after all this? As a reward, here’s a vine of LeBron James blocking Andre Iguodala to seal an NBA championship, because that is now you owning computer history and functionality.

https://vine.co/v/5BuzmV0Xw5b

From this point on, we can just pop the Windows 10 installation disc back in and follow the instructions like we did before. I can now select the unformatted 50 GB partition on which to install Windows 10 – and the installation wizard basically runs itself. After a lot of practical setup username and password nonsense, now when I start up my computer, I get this screen:

boot-screen-640x480

And I can just choose whether to enter the Windows 7 or 10 OS. Simple as that. I’ll go more into some of what this setup allows me to do (particularly the Windows Subsystem for Linux) another day, as this post has gone on waaaayy too long. Happy summer, everyone!